- Domenico, A., Torelli, L., Vaciago, A. & Zambonelli, L. (1968). J. Chem. Soc. A, 1351-1361.
- Enraf-Nonius (1993). CAD-4/PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Evans, M. A. H. & Williams, J. O. (1982). Thin Solid Films, 87, L1-L2.
- Hursthouse, M. B., Malik, M. A., Motevalli, M. & O'Brien, P. (1991). Organometallics, 10, 730–732.
- Hursthouse, M. B., Malik, M. A., Motevalli, M. & O'Brien, P. (1992a). Polyhedron, 11, 45–48.
- Hursthouse, M. B., Malik, M. A., Motevalli, M. & O'Brien, P. (1992b). J. Mater. Chem. 2, 949–955.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Malik, M. A., Motevalli, M., Walsh, J. R. & O'Brien, P. (1992). Organometallics, 11, 3136–3139.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Osaka, K. & Yamamoto, T. (1991). Inorg. Chem. 30, 2328-2332.
- Saunders, A., Vecht, A. & Tyrell, G. (1986). Ternary Multiary Cmpd. Proc. 7th Int. Conf. (publ. 1987); Chem. Abs. (1988), 108, 66226h. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1993). PLUTON93. Molecular Graphics Program. University of Utrecht, The Netherlands.
- Takahashi, Y., Yuki, R., Motojima, M. & Sugiyama, K. (1980). J. Cryst. Growth, 50, 491-497.

Acta Cryst. (1996). C52, 1933-1935

(Thiocyanato-N)tris(triphenylphosphine)silver(I) Chloroform Solvate

ABDUL HAMID OTHMAN,^a HOONG-KUN FUN,^b KANDASAMY SIVAKUMAR,^b YANG FARINA^a AND IBRAHIM BABA^a

^aDepartment of Chemistry, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia. E-mail: hamie@pkrisc.cc.ukm.my

(Received 12 February 1996; accepted 14 March 1996)

Abstract

Crystals of $[Ag(NCS)(C_{18}H_{15}P)_3]$.CHCl₃ consist of discrete $[Ag(PPh_3)_3(NCS)]$ molecules, in which the Ag atom is tetrahedrally surrounded by three P atoms of the PPh₃ groups and the N atom of the isothiocyanate ligand, and chloroform molecules. The coordination polyhedron around the Ag atom is distorted with angles at Ag ranging from 102.58 (10) to 114.73 (3)°. The Ag-N-C angle is 159.6 (3)°.

Comment

During our study of the reactions of the dimer bis-[acetato(triphenylphosphine)silver(I)], we have reacted the dimer with N-pyrrolidine carbodithioate (Othman,

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Fun & Sivakumar, 1996), bis(2-hydroxyethyl)dithiocarbamate (Drew, Othman, Baba, Farina & Ng, 1996), 8-hydroxyquinoline (Othman, Goh, Fun & Sivakumar, 1996) and 2-hydroxy-3,5-dinitrobenzoate ligands, all of which are potentially bidentate (Othman, Effendy & White, 1996). Crystallographic studies of the products of these reactions showed that the Ag atoms are in tetrahedral environments except in the dimeric benzoate complex, in which the Ag atom is in a trigonal environment, essentially retaining the structure of the parent acetate. The title compound, (1), is the product of an attempt to prepare a complex between the dimer and thiosemicarbazide.

The geometry about the Ag atom in (1) is tetrahedral, with three P atoms of the triphenylphosphine ligands and the N atom of the isothiocyanate ligand bonded to the Ag atom. The angles about the Ag atom deviate significantly from the ideal 109.5°, but to a lesser extent than those in [Ag(PPh_3)_3Cl] (Cassel, 1981). The difference can be attributed to the different electronegativities of the N and Cl donor atoms of the anionic ligands, rather than to the Ag—N distance [2.319 (4) Å] being shorter than the Ag—Cl distance of 2.552 (1) Å. The π -acceptor nature of the NCS ligand enhances the bonding of the PPh₃ ligands to the Ag atom.

Fig. 1. A 30% displacement ellipsoid plot of (1) with the atomic numbering scheme.

The structures of other silver complexes of the type $[Ag(PPh_3)_3X]$ (X = BF₄, I, Br, Cl), where the monodentate ligand X is bonded to the Ag atom, have been reported (Camalli & Caruso, 1987; Cassel, 1981; Engelhardt, Healy, Patrick & White, 1987). In these complexes, the Ag-P distances are usually close to 2.55 Å, irrespective of the anion or the values of the P-Ag-P angles; however, it should be noted that one of the Ag-P bonds in [Ag(PPh₃)₃I] is exceptionally long at 2.780(2)Å. The Ag-P bond lengths in (1) are similar to those in the halide complexes, consistent with the anionic ligands exerting little or no electronic influence on the Ag-P bonds. However, structural and ³¹P NMR studies on $[Ag(PPh_3)_3X]$ complexes $(X = BF_4,$ I, Cl) have confirmed that the basicity of the anion can induce large variations in the geometry of the complexes (Camalli & Caruso, 1987).

In the majority of NCS complexes, the M-N-C angles lie between 150 and 180°. In (1), the Ag-N-C angle $[159.6(3)^{\circ}]$ lies within this range and correlates well with the N1-C55 [1.145 (5) Å] and C55-S1 [1.635 (4) Å] distances (Drew & Othman, 1975).

Chloroform molecules are found trapped in the cavities formed between the phenyl rings of adjacent complex molecules. They are stacked along the c axis with a minimum Cl. Cl interaction of 3.900 (5) Å. No significant Cl...S interaction was observed, as this would result in further deviation of the M-N-C angle.

Experimental

The title compound was prepared by reacting bis[acetato-(triphenylphosphine)silver(I)] with a slight excess of thiosemicarbazide in ethanol. The mixture was heated and stirred. The resulting cloudy solution was filtered and a little chloroform added. Crystals of the product appeared on cooling to room temperature.

Crownal data

Crystal data				
Cryslal auta		• C19	0.0013 (3)	0
$[Ag(NCS)(C_{18}H_{15}P)_3].CHCl_3$	Mo $K\alpha$ radiation	C20	-0.0769 (3)	0
M = 1072.13	$\lambda = 0.71073$ Å	C21	-0.1810 (3)	0
$m_r = 1072.15$	A = 0.71075 A	C22	-0.2049 (4)	0
	Cell parameters from 38	C23	-0.1278 (4)	0
P1	reflections	C24	-0.0254 (3)	0
a = 13.329(2) Å	$\theta = 8-25^{\circ}$	C25	0.1887 (3)	0
h = 13.647(1) Å	$u = 0.726 \text{ mm}^{-1}$	C26	0.1279 (4)	0
v = 13.047(1) A	$\mu = 0.720 \text{ mm}$	C27	0.1724 (5)	0
c = 14.467(1) A	T = 293 (2) K	C28	0.2730 (5)	0
$\alpha = 89.70(1)^{\circ}$	Prism	C29	0.3364 (4)	0
$\beta = 79.47(1)^{\circ}$	$0.62 \times 0.52 \times 0.44$ mm	C30	0.2942 (3)	0
$p = (0.00(1))^{\circ}$		C31	0.1305 (3)	0
$\gamma = 80.09(1)$	Colouriess	C32	0.1398 (3)	1
$V = 2547.7(5) \text{ A}^3$		C33	0.1260 (4)	1
Z = 2		C34	0.1019 (4)	1
$D_{\rm m} = 1.398 \ {\rm Mg \ m^{-3}}$		C35	0.0936 (4)	1
$D_{x} = 1.550$ Mig in		C36	0.1088 (4)	0
D_m not measured		C37	0.0639 (3)	0
		C38	0.0284 (4)	0
Data collection		C39	-0.0765 (4)	0
		C40	-0.1440(3)	0
Siemens P4 diffractometer	$R_{\rm int} = 0.0165$	C41	-0.1090(3)	0
$\theta/2\theta$ scans	$\theta_{\rm max} = 27.50^{\circ}$	C42	-0.0055(3)	Ő
	· mus = · · • •			•

Absorption correction: none

13 101 measured reflections 11 600 independent reflections 8877 observed reflections

 $[I > 2\sigma(I)]$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.0513$	$\Delta \rho_{\rm max} = 1.55 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1641$	$\Delta \rho_{\rm min}$ = -1.06 e Å ⁻³
S = 1.059	Extinction correction: none
11 600 reflections	Atomic scattering factors
586 parameters	from International Tables
H-atom parameters not	for Crystallography (1992,
refined	Vol. C, Tables 4.2.6.8 and
$w = 1/[\sigma^2(F_o^2) + (0.1084P)^2]$	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	

 $h = -1 \rightarrow 17$ $k = -17 \rightarrow 17$

 $l = -18 \rightarrow 18$

3 standard reflections

reflections

monitored every 97

intensity decay: <3%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	y	z	U_{eo}
Agl	0.24382 (2)	0.69426 (2)	0.70424 (2)	0.04329 (10)
ΡĨ	0.24790 (7)	0.51601 (6)	0.75764 (6)	0.0406 (2)
P2	0.13834 (7)	0.82887 (6)	0.82711 (6)	0.0421 (2)
P3	0.20026 (7)	0.72535 (6)	0.54053 (6)	0.0401 (2)
C1	0.1184 (3)	0.4823 (2)	0.7859(2)	0.0425 (7)
C2	0.0536 (3)	0.5070 (3)	0.7223 (3)	0.0542 (9)
C3	-0.0460(3)	0.4843 (3)	0.7389 (4)	0.0651 (11)
C4	-0.0807 (4)	0.4381 (4)	0.8205 (4)	0.0757 (13)
C5	-0.0153 (4)	0.4133 (4)	0.8845 (4)	0.0738 (13)
C6	0.0819 (3)	0.4361 (3)	0.8683 (3)	0.0586 (10)
C7	0.3164 (3)	0.4212 (3)	0.6692 (2)	0.0417 (7)
C8	0.4069 (3)	0.4382 (3)	0.6116 (3)	0.0618 (10)
C9	0.4600 (4)	0.3659 (4)	0.5443 (4)	0.0775 (14)
C10	0.4260 (4)	0.2806 (4)	0.5330 (3)	0.0689 (12)
C11	0.3370 (4)	0.2618 (3)	0.5907 (3)	0.0653 (11)
C12	0.2830(3)	0.3321 (3)	0.6589(3)	0.0544 (9)
C13	0.3068 (3)	0.4790 (3)	0.8595 (2)	0.0452 (7)
C14	0.3514 (4)	0.3809 (3)	0.8723 (3)	0.0582 (10)
C15	0.3927 (4)	0.3565 (4)	0.9526 (3)	0.0706 (12)
C16	0.3905 (4)	0.4270 (4)	1.0195 (3)	0.0764 (14)
C17	0.3459 (5)	0.5257 (5)	1.0079 (4)	0.091 (2)
C18	0.3056 (4)	0.5513 (3)	0.9274 (3)	0.0692 (12)
C19	0.0013 (3)	0.8204 (3)	0.8647 (2)	0.0445 (7)
C20	-0.0769 (3)	0.9020(3)	0.8745 (3)	0.0601 (10)
C21	-0.1810 (3)	0.8893 (4)	0.8991 (4)	0.0738 (13)
C22	-0.2049 (4)	0.7970 (4)	0.9130 (4)	0.0728 (13)
C23	-0.1278 (4)	0.7152 (4)	0.9044 (3)	0.0657 (11)
C24	-0.0254 (3)	0.7258 (3)	0.8807 (3)	0.0560 (9)
C25	0.1887 (3)	0.8236 (2)	0.9358 (3)	0.0466 (8)
C26	0.1279 (4)	0.8195 (3)	1.0245 (3)	0.0598 (10)
C27	0.1724 (5)	0.8148 (4)	1.1042 (3)	0.0758 (13)
C28	0.2730 (5)	0.8167 (4)	1.0972 (4)	0.087(2)
C29	0.3364 (4)	0.8219 (4)	1.0107 (4)	0.0779 (14)
C30	0.2942 (3)	0.8243 (3)	0.9296(3)	0.0621 (10)
C31	0.1305 (3)	0.9604 (3)	0.7974 (3)	0.0454 (8)
C32	0.1398 (3)	1.0327 (3)	0.8598 (3)	0.0586 (10)
C33	0.1260 (4)	1.1325 (3)	0.8347 (4)	0.0728 (13)
C34	0.1019 (4)	1.1582 (3)	0.7493 (4)	0.0729 (13)
C35	0.0936 (4)	1.0866 (3)	0.6865 (4)	0.0710 (12)
C36	0.1088 (4)	0.9871 (3)	0.7095 (3)	0.0610 (10)
C37	0.0639 (3)	0.7195 (2)	0.5426 (2)	0.0429 (7)
C38	0.0284 (4)	0.6867 (4)	0.4663 (3)	0.0662 (11)
C39	-0.0765 (4)	0.6780 (4)	0.4760 (4)	0.0799 (15)
C40	-0.1440 (3)	0.7041 (3)	0.5580 (4)	0.0671 (11)
C41	-0.1090 (3)	0.7388 (4)	0.6342 (3)	0.0650(11)
C42	-0.0055(3)	0.7458 (3)	0.6259(3)	0.0544(9)

C43	0.2658 (3)	0.6479 (3)	0.4375 (2)	0.0441 (7)
C44	0.3089 (4)	0.6858 (3)	0.3535 (3)	0.0674 (12)
C45	0.3596 (5)	0.6227 (4)	0.2784 (3)	0.081 (2)
C46	0.3674 (4)	0.5218 (4)	0.2859 (3)	0.0734 (13)
C47	0.3254 (4)	0.4837 (3)	0.3689 (3)	0.0693 (12)
C48	0.2741 (4)	0.5455 (3)	0.4434 (3)	0.0563 (9)
C49	0.2171 (3)	0.8495 (3)	0.5004 (3)	0.0481 (8)
C50	0.3020 (3)	0.8856 (3)	0.5212 (3)	0.0568 (9)
C51	0.3242 (4)	0.9765 (3)	0.4851 (4)	0.0762 (14)
C52	0.2611 (5)	1.0304 (4)	0.4326 (5)	0.088 (2)
C53	0.1760 (5)	0.9970 (4)	0.4146 (5)	0.093 (2)
C54	0.1535 (4)	0.9060 (3)	0.4487 (4)	0.0725 (13)
N1	0.4128 (3)	0.7185 (3)	0.6988 (3)	0.0641 (9)
C55	0.4835 (3)	0.7397 (3)	0.7230 (3)	0.0559 (9)
S1	0.58586 (10)	0.76794 (10)	0.75668 (12)	0.0858 (4)
C56	0.4851 (5)	0.0321 (4)	0.7830 (5)	0.093 (2)
Cll	0.3948 (2)	0.0104 (2)	0.7154 (2)	0.1388 (8)
Cl2	0.5300 (2)	0.1431 (2)	0.7405 (2)	0.1490 (9)
CI3	0.4293 (4)	0.0500(3)	0.8981 (2)	0.231 (2)

Table 2. Selected geometric parameters (Å, °)

Ag1-N1	2.319 (4)	P2-C25	1.816 (4)
Ag1-P1	2.5431 (9)	P2-C31	1.833 (4)
Ag1-P2	2.5967 (9)	P3-C37	1.828 (4)
Ag1-P3	2 5561 (9)	P3-C43	1 824 (4)
	1 837 (4)	P3_C49	1.825 (4)
P17	1.824 (4)	NI	1.145 (5)
	1.823 (4)	C55-S1	1.635 (4)
P2-C19	1.832 (4)	655 61	1.055 (4)
N1	103 36 (10)	C43_P3_4g1	122.95 (11)
N1 = Ag1 = P3	107.89 (10)	C49 = P3 = Ag1	112.07 (13)
$P1 = \Delta g1 = P3$	114 73 (3)	C2	117.2 (3)
NI Agi P2	102 58 (10)	C_{2} C_{1} P_{1}	173.0 (3)
D1 Aa1 D2	114 73 (3)	$C_{12} C_{7} P_{1}$	122.5 (3)
D3 Ag1 D2	112 12 (3)	$C_{12} - C_{7} - P_{1}$	1122.5(3)
C7 - PI - CI	112.12(3)		1185(3)
	102.4(2)	C10-C13-D1	122 3 (2)
C_{13} P_1 C_7	104.0(2)	$C_{14} - C_{13} - F_{1}$	122.5 (3)
	102.4(2) 112.83(11)	C24_C19_P2	118 3 (3)
$C7_P1_A g1$	112.05(11) 114.74(11)	C_{2}	1237(3)
	118.08(12)	$C_{20} - C_{23} - \Gamma_{2}$	125.7(3)
C_{15} P_{2} C_{10}	104.1(2)	C32 C31 P2	122 0 (3)
$C_{25} = P_2 = C_{15}$	104.1(2) 102.7(2)	$C_{32} = C_{31} = C_{22}$	122.9(3)
$C_{10} P_{2} C_{31}$	102.7(2)	C30-C37-F2	123.0 (3)
$C_{19} = C_{19} = C$	101.0(2)	C30-C37-F3	123.0(3)
C15-F2-Ag1	112.47 (11)	$C_{42} = C_{37} = F_{3}$	17.8 (3)
C_{23} P_{2} A_{g1}	112.10(12)	C44-C43-F3	123.3(3)
C31—F2—Ag1	102.6 (2)	C40-C43-F3	110.0 (3)
C43 - P3 - C37	102.0 (2)	C54C49P3	123.0(3)
C_{47} $- r_{3}$ $- C_{37}$	103.0 (2)	C55 N1 Ac1	117.1 (3)
C37 D3 Ag1	101.0 (2)	NI CSS SI	1788(1)
A COMPANY PROPERTY OF A COMPANY			

The H atoms were placed in calculated positions and subsequently constrained to ride on the atoms to which they are attached. The extreme values in the final difference map occur around the Cl atoms of the chloroform molecule; otherwise the map is featureless.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990) (direct methods). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC, PARST (Nardelli, 1983). Software used to prepare material for publication: SHELXL93.

The authors thank the Universiti Kebangsaan Malaysia for grant S/2/96 and the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 123-3417-2201. KS thanks Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1253). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Camalli, M. & Caruso, F. (1987). Inorg. Chim. Acta, 127, 209-213.
- Cassel, A. (1981). Acta Cryst. B37, 229-231.
- Drew, M. G. B. & Othman, A. H. (1975). Acta Cryst. B32, 613-614.
- Drew, M. G. B., Othman, A. H., Baba, I., Farina, Y. & Ng, S. W. (1996). In preparation.
- Engelhardt, L. M., Healy, P. C., Patrick, V. A. & White, A. H. (1987). Aust. J. Chem. 40, 1873–1880.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Othman, A. H., Effendy & White, A. H. (1996). In preparation.
- Othman, A. H., Fun, H. K. & Sivakumar, K. (1996). Acta Cryst. C52, 843-845.
- Othman, A. H., Goh, S. C., Fun, H. K. & Sivakumar, K. (1996). Acta Cryst. C52. In the press.
- Sheldrick, G. M. (1990). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 1935-1939

Molecular Adducts of Inorganic Salts. VI. The Dimorphism of $Cd(ReO_4)_2.2tu$ (tu = Thiourea)

ROSICA PETROVA, OLYANA ANGELOVA AND JOSEF MACÍČEK*

Bulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Rakovski Str. 92, 1000 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 12 December 1995; accepted 25 March 1996)

Abstract

The title compound, cadmium tetraoxorhenium bis(thiourea), Cd(ReO₄)₂.2CH₄N₂S, forms two polymorphs: monoclinic, (I), and triclinic, (II). Both are built up from infinite chains in which the Cd atoms are hexacoordinate. In (I), the centrosymmetric CdO₄S₂ octahedra are interlinked by double ReO₄ bridges, while in (II), CdO₃S₃ octahedra are connected by alternating double ReO₄ and S bridges. The Cd—S coordination bond length is 2.495 (2) Å in (I) and ranges from 2.576 (2) to 2.719 (2) Å in (II). The hydrogen bonding between chains is more developed in compound (II).